The Liver Meeting® 2017 in Washington D.C.

Significant anti-fibrotic efficacy of EDP-305, a highly potent and selective farnesoid X receptor (FXR) agonist, in a rat model of thioacetamide-induced liver fibrosis and cirrhosis

Li-Juan Jiang^{1,*}, Dipankar Bhattacharya², Young J. Yoon², Hsin-I Chou², Mary Chau¹, Yang Li¹, Yat Sun Or¹, Scott L. Friedman²

¹ Enanta Pharmaceuticals, Inc., Watertown, MA, USA; ² Icahn School of Medicine at Mount Sinai, New York, NY, USA

FXR has emerged as an attractive target for the treatment of NASH & PBC NASH = nonalcoholic steatohepatitis; PBC = primary biliary cholangitis

- Clinical validation has been achieved in NASH and PBC with the FXR agonist obeticholic acid (OCA)
- FXR is a nuclear receptor and main regulator of bile acid levels in the liver and small intestine
- FXR responds to bile acids by regulating transcription of key enzymes and transporters
- FXR agonists have ameliorated a number of the pathologies in NASH, including effects on fibrosis, inflammation, lipid metabolism & gluconeogenesis

Matsubara Mol Cell Endocrinol 2013; Neuschwander-Tetri et al, Lancet, 2014

EDP-305 is a potent and selective FXR agonist

EDP-305 is >16-fold more potent than OCA and its major metabolites

Compound	FXR (HEK)	TGR5 (CHO)
	EC50 nM (% efficacy)*	
Obeticholic Acid (OCA) Glyco-OCA Tauro-OCA	130 (150) 360 (155) 250 (100)	380 (72) 720 (157) 540 (161)
EDP-305	8 (152)	> 15,000 (NS)

Y. Li, et al, AASLD 2016 poster 1540

CHO Cells

CHO Cells

CDCA

OCA

EDP-305

^{*} Transporter inserted, FXR efficacy CDCA = 100%; TGR5 efficacy LCA = 100%

EDP-305 regulates key gene expression *In vitro*

Bile acid metabolism

- SHP; FGF19; OST-α; BSEP; CYP7A1

Lipid metabolism

- LDLR; PCSK9; SREBP-1C; SCD1; CD36; DGAT2; APOB; APOC3; HL; SRB1

Inflammation

- NF-κB; TLR2; TLR9; TNFα; IL8; IL1α; IL1β; IL1R1; CCL2; CCR1; CCR4; CEBPB

Fibrosis

- α -SMA; TIMP1; TIMP2; PDGF α ; PDGF β ; COL1A2; COL3A1; ITGB6

Glucose metabolism

- FGF21; IRS2; GLUT2; GLUT4; FOXO1

EDP-305 demonstrates its efficacy in eight (8) animal models

- Mouse model
 - FXR mechanism of action: SHP, CYP7A1 and FGF15 (Enanta Pharmaceuticals, Inc.)
- NASH models
 - STAMTM mouse NASH model (Stelic, Japan)
 - MCD-fed mouse steatohepatitis model with progressive fibrosis (Harvard/BIDMC)
 - Choline-deficient, L-amino acid-defined, high-fat-diet, mouse NASH model (Harvard/MGH)
 - Diet-induced NASH mouse model (Physiogenex, France)
- Biliary fibrosis models
 - Mdr2-/- mouse biliary fibrosis model (Harvard/BIDMC)
 - Rat bile duct ligation model (Harvard/MGH)
- Liver fibrosis/cirrhosis model
 - Thioacetamide-induced rat liver fibrosis/cirrhosis model (Icahn School of Medicine at Mt. Sinai)

EDP-305 protects rats and mice from liver steatosis and injury

- Lowers liver and plasma lipid contents (including cholesterol, TG & FFA)
- Reduces ballooning & fibrosis progression, and reduces inflammation
- Lowers NAFLD Activity Score (NAS)

Rat model of thioacetamide(TAA)-induced liver fibrosis and cirrhosis Study design

Weeks TAA ip injection three times per week Rats develop fibrosis by week 4 4 - 8 Compound concurrently with TAA (Therapeutic Intervention) Rats develop cirrhosis by week 8. Endpoint 1: fibrosis reduction 8 - 12 Compound w/o TAA (Cirrhosis Reversal) 12 Endpoint 2: cirrhosis reversal

Endpoints:

- Histopathologic analyses (including Sirius Red staining & pathology scores)
- Serum clinical chemistry
- Weight: body, liver & spleen
 - Key fibrogenic gene expression

EDP-305 significantly reduced fibrosis progression in rats Therapeutic Intervention Results

	Sirius red positive tissue (%)	Reduction in fibrosis (%)
Vehicle	100 %	
EDP-305 10 mpk	50 %	50 % ↓
EDP-305 30 mpk	45 %	55 % ↓

Pathology scores (including Scheuer score, Ishak score, Ductular reaction/Metaplasia scoring) also decreased in parallel with collagen morphometry

EDP-305 significantly improved liver/spleen weights & serum clinical chemistry Therapeutic Intervention Results

- Progression of fibrosis/cirrhosis causes liver to body weight ratios to decrease, spleen to liver weight ratios to increase (Splenomegaly), and serum AST levels to increase
- EDP-305 significantly reduced the progression of fibrosis, which led to increased liver to body
 weight ratios and decreased spleen to liver weight ratios. EDP-305 also improved serum clinical
 chemistry (e.g., AST) for liver function testing

Liver to body weight ratio

Spleen to liver weight ratio

Serum AST

EDP-305 decreases collagen deposition in rats with established cirrhosis Cirrhosis Reversal Results

	Sirius red positive tissue (%)	Reduction in fibrosis (%)	
Vehicle	100 %		
EDP-305 10 mpk	89 %	11 % ↓	
EDP-305 30 mpk	75 %	25 % ↓	

EDP-305 down-regulated key fibrogenic genes

Cirrhosis Reversal Results

	% Reduction compared to vehicle
Collagen type1 alpha 2 (Col1a2)	65% ↓
Alpha smooth muscle actin (α-SMA)	23% ↓
Platelet derived growth factor β (PDGF β)	40% ↓
Matrix metallopeptidase 2 (MMP2)	52% ↓
Tissue inhibitor of metalloproteinase-1 (TIMP1)	37% ↓
Tissue inhibitor of metalloproteinase-2 (TIMP2)	11%↓

Conclusions & EDP-305 development

- EDP-305 is a potent FXR receptor agonist with no/minimal activity against other nuclear receptors and TGR5
- EDP-305 exhibits excellent anti-fibrotic efficacy in rats with ongoing TAA-induced fibrosis
- It also decreases collagen deposition in rats with established cirrhosis
- These results warrant further clinical study of EDP-305 for the treatment of NASH and PBC
- Phase 1 study in healthy subjects and subjects with presumed NAFLD has recently been completed
- Fast Track Designation has been granted by FDA

EDP-305 posters in this meeting

- "A novel FXR agonist EDP-305 potently suppresses hepatic stellate cell activation and hepatic fibrosis in chronic mouse models of biliary and metabolic liver disease" (#367)
 - Presented from 8 am 5:30 pm on Oct 20
- "EDP-305 favorably regulates lipoprotein mechanism in vitro" (#1988)
 - Selected as "Presidential Poster of Distinction"
 - To be presented from 8 am 5:30 pm today (Oct 23)

Acknowledgement

Enanta

Yat Sun Or

Yang Li

Mary Chau

Manuel Roqueta-Rivera

Kelsey Garlick

Jianyu Shang

Guoqiang Wang

Ruichao Shen

Yong He

Jiang Long

Bin Wang

Jun Ma

Brett Granger

Mount Sinai

Scott L. Friedman

Dipankar Bharracharya

Young J. Yoon

Hsin I. Chou

THANKS FOR YOUR ATTENTION

