

EDP-235, a Potent, Once-Daily Oral Antiviral Treatment for COVID-19

Li-Juan Jiang, Ph.D. on behalf of Enanta COVID-19 Research Team

Discovery on Target: New Antivirals Conference, Boston, MA. October 20th, 2022

Enanta Pipeline

	PRC	DUCT CANDIDATE	DISCOVERY	PRECLINICAL	PHASE 1	PHASE 2	PHASE 3	MARKET
Virology: Liver	HCV	Protease Inhibitor	Glecaprevir-	containing pan	genotypic 2-D	AA combo		glecaprevit/pibrentasvit
	HBV	Core Inhibitor	EDP-514					
		N-Protein Inhibitor	EDP-938		RS	VPEDs		
	RSV		EDP-938		I	RSVTx		
Virology:			EDP-938		F	RSVHR		
Respiratory		L-Protein Inhibitor	EDP-323					
	hMPV	Non-Fusion Inhibitor						
	COVID-19	Protease Inhibitor	EDP-235			Phase 2 initiating	g in 4Q22	
Discovery or Preclinical	RSV, HBV, COVID-19, other							
For Out-license	NASH	FXR Agonists	EDP-305 (Phase 2), EDP-297 (Phase 1)					

* Fixed-dose combination contains glecaprevir and AbbVie's NS5A inhibitor, pibrentasvir. Marketed by AbbVie as MAVYRET® (U.S.) and MAVIRET® (ex-U.S.).

Effective Oral Treatments for COVID-19 with Minimal Drug-drug Interaction & Safety Concerns are Urgently Needed

- Globally, over 620 million cases of COVID-19 have been reported since its emergence in October 2022 with over 6.2 million deaths¹
- Novel vaccines against SARS-CoV-2 were developed and approved with unprecedented speed and helped drive down the number of new cases
- However, novel variants are increasing transmissibility and the ability to evade current vaccines coupled with vaccine hesitancy and the low rate of vaccination in low- and lower-middle-income countries suggest that COVID-19 will persist
- Twice-daily oral antivirals Paxlovid (ritonavir-boosted nirmatrelvir) and Molnupiravir were approved under FDA Emergency Use Authorization (EUA)

SARS-CoV-2 Virus Causal agent of COVID-19

EDP-235: Oral Protease Inhibitor Specially Designed for COVID-19

- SARS-CoV-2 3CLpro (main protease, M^{pro}, nsp5) is the **primary** protease for processing viral polyproteins, which is **critical** for production of the replication-transcription complex (RTC)
- High degree of sequence homology in and around the enzyme active site of 3CLpro
- Catalytic cysteine (Cys145) of 3CLpro is common to all seven human coronaviruses

EDP-235: Highly Potent 3CLpro Inhibitor and Retains Activity Against SARS-CoV-2 Variants

	Assay	Lineage	Potency (nM)
		B.1.1.529, <i>BA.2, BA.5,</i> BA.2.75* (P132H) [Omicron]	4.1 ± 0.8
	3CLpro FRET (IC ₅₀)	A [Original] / B.1.617.2 [Delta]**	5.8 ± 3.7
		B.1.1.318 (T21I)	2.0 ± 0.1
Biochemical Activity		B.1.351 (K90R) <i>[Beta]</i>	2.8 ± 0.9
		B.1.351.2 (K90R/A193V) [Beta]	5.4 ± 1.0
		B.1.617.3 (A194S)	5.7 ± 0.5
		C.36.3 (G15S)	4.7 ± 2.5
		P.2 (L205V) <i>[Zeta]</i>	3.4 ± 1.0
Live Virus		A [Original]	11 ± 8 ¹
	Vero E6 +PGPi, CPE readout (EC ₉₀)	B.1.617.2 [Delta]	9.1 ± 2.9
		B.1.1.529 [Omicron]	5.1 (n=1)

FRET: fluorescence resonance energy transfer, P-gpi: P-glycoprotein inhibitor CP-100356 (2 µM), CPE: cytopathic effect

Values average of replicate experiments except where noted

*Omicron subvariant colloquially known as 'Centaurus'

**3CLpro sequences for the ancestral A lineage and B.1.617.2 (Delta) variant are identical

EDP-235: Highly Selective 3CLpro Inhibitor

Cysteine Proteases

- SARS CoV 2 PLpro, 3CLpro
- Caspases 1 11, 14

Cathepsins B, C, D, E, G, H, K, L, S, V

· Papain, Calpain 1

Serine Proteases

- Trypsin
- TMPRSS 2
- Furin

Aspartyl protease

BACE1

Zn metalloprotease

• ACE 1, 2

- Tested against 31 host proteases of diverse classes
- IC₅₀ > 100 µM against 23 out of 31 including host proteases relevant to viral infection

Target	EDP-235 IC ₅₀ (μΜ)				
Caspase 2	4.6				
Caspase 3	4.2				
Caspase 6	2				
Caspase 7	4.7				
Caspase 8	22.5				
Caspase 9	4.7				
Caspase 14	9				
Cathepsin K	18.5				
SARS-CoV-2 3CLpro	0.0058				
Selectivity Index	> 340				
Cysteine Proteases					

Host proteases in viral entry/fusion

1. Signal Transduction and Targeted Therapy (2021). 6:233 2. Int. J. Mol. Sci. (2020), 21(24), 9523

EDP-235 Demonstrates Potent Antiviral Activity Against Other Human Coronaviruses

	Assay	Virus (Isolate)	Potency (nM)
		HCoV-229E	5.4 ± 0.9
Biochemical Activity	3CLpro FRET (IC ₅₀)	SARS-CoV	1.9 ± 0.3
		MERS-CoV	70 ± 20
	HCT-8, qPCR (EC ₅₀)	HCoV-OC43	57 ± 24
	LLC-MK2, qPCR (EC ₅₀)	HCoV-NL63	6.1 ± 1.8
Cellular Activity	MRC-5, CPE (EC ₅₀)	HCoV-229E	3.6 ± 1.2 ¹
	Vero 76, Viral yield (EC ₉₀)	MERS-CoV (EMC/2012)	130
	Vero E6, CPE (EC ₅₀)	SARS-CoV (Toronto-2) +P-gpi	24 ²

FRET = fluorescence resonance energy transfer; CPE = cytopathic effect; P-gpi = P-glycoprotein inhibitor CP-100356 (2 µM); qPCR = quantitative polymerase chain reaction

¹ EC₅₀ of nirmatrelvir (Owen, et al. medRxiv, 2021) = 190 nM; ² EC₅₀ of nirmatrelvir = 151 nM

EDP-235 Has High Human Oral Absorption Potential and Low Plasma Clearance

Compound	P _{app} (1	Plasma Clearance CL _p	
Compound	A-to-B	B-to-A	(mL/min/kg)
EDP-235	24.8	19.4	0.2
nirmatrelvir	2.4	12.4	5.6*

 P_{aap} = permeability coefficient measured in human colon Caco-2 cells; CL_p = human plasma clearance calculated from human liver microsomal stability; * CL_p of 6 mL/min/kg was reported by Pfizer at the 2021 ACS Meeting

EDP-235 Displays Superior Plasma Exposure and Oral Bioavailability in Preclinical Species

p.o. formulation: 0.5% methyl cellulose (MC) in water

*Reported by Pfizer at 2021 ACS Meeting

**nirmatrelvir *p.o.* formulation for monkey: 2% Tween 80/ 98% of 0.5% MC in water; https://www.medrxiv.org/content/10.1101/2021.07.28.21261232v1

SARS-CoV-2 Tropism and EDP-235 Target Distribution

EDP-235: Excellent Target Tissue Distribution in Rats

Drug	Sev	AUC Ratios over Plasma			
Drug		Lung	Kidney	Heart	
	М	4.1	6.3	4.7	
EDF-235	F	3.8	6.2	4.5	
nirmatralvir	М	0.8	1.2	0.9	
nirmatreivir	F	0.6	1.0	0.8	

Rat *p.o.* 10 mg/kg *p.o.* Formulation: 0.5% Methyl Cellulose (MC) in water

Alveolar Macrophage (AM) Plays an Important Role in SARS-CoV-2 Infection

Front. Immunol., 05 June 2020 | https://doi.org/10.3389/fimmu.2020.01312

- Alveolar macrophages (AMs) are the first line of defense against infections, including SARS-CoV-2 infection
- AM and macrophages are infected by SARS-CoV-2 via ACE2 in patients with COVID-19
- Infected macrophages could accelerate spread of SARS-CoV-2 to multiple organs, which may drive the cytokine storm, and lead to failure of multiple organs

EDP-235: Excellent Penetration into Alveolar Macrophages(AM) [§] in Rats

	Plasma		Α	ALIC Ratio	
Compd.	C _{max} (µg/mL)	AUC _{0-∞} (µg-h/mL)	C _{max} (µg/mL)	AUC _{0-∞} (µg-h/mL)	over Plasma
EDP-235	1.2	9.6	50.7	272.0	28.4
nirmatrelvir	1.5	2.7	0.5	1.3	0.5

Single Dose PK; p.o. Formulation: 0.5% Methylcellulose (MC) in water

Enanta

EDP-235: Superior Ex Vivo Intracellular Uptake into Target Cells

© 2022 Enanta Pharmaceuticals, Inc. | 14

Human Efficacious Dose Prediction: 100 - 500 mg Oral QD

Considering Excellent Target Tissue Penetration

 EDP-235 is projected to have a long half-life of 16 hours with an efficacious dose of 100 - 500 mg once-daily (QD) in humans

Jiang, et al., ISIRV Poster #120, Oct 19, 2021

EDP-235: Phase 1 Safety, Tolerability and Pharmacokinetics

- Randomized, double-blind, placebo-controlled Phase 1 study in healthy volunteers (n=72)
 - \geq Single and multiple ascending doses (SAD: 50 800 mg and MAD: 200 800 mg once-daily)
- Generally safe and well-tolerated up to 400 mg doses for 7 days in humans
- Excellent human plasma pharmacokinetics support efficacious doses of 200 mg or 400 mg once daily (QD) without the need for boosting (*e.g.*, ritonavir)
 - \geq Projected to have 4x higher drug level in lung tissue compared to plasma based on preclinical animal models

Measured Flasma Drug Multiples			Predicted Lung Drug Multiples"			
Variant	200mg QD	400mg QD	Va	riant	200mg QD	400mg QD
Alpha	3x	6x	Alp	oha	12x	24x
Omicron	7x	13x	Or	nicron	28x	52x

oourod Dioomo Drug Multiploo*

Consistent half-life ranging from 13 to 22 hours

EDP-235 demonstrated an excellent correlation between preclinical and clinical pharmacokinetics

*Multiples by which mean trough drug plasma levels at steady state are higher than protein adjusted EC_{an} as measured in Vero cells

EDP-235 Profile Suggests Potential for Best-in-Class Antiviral Treatment for SARS-CoV-2 Infection

Properties	EDP-235 ¹	Nirmatrelvir ²	PBI-0451 ³	S-217622 ⁴
Vero Cell EC ₅₀ (nM) (Potency)*	5.1	75	48	69 (Delta)
Oral Bioavailability ⁵	95%	31 – 50%	n/a	97%
Lung Penetration ⁶	4.1	0.8 ⁷	~1	0.7 ⁷
Projected Efficacious Dose	200 or 400 mg QD	300 mg/100 mg ritonavir BID	700 mg BID	375(D1)/125 (D2-5) QD

- 1. Jiang et al., ISIRV Poster #120, Oct 19, 2021
- 2. Owen et al., Science November 2021; Owen et al. ACS Spring 2021 meeting; EUA fact sheet for healthcare providers
- 3. Pardes ICAR Presentation March 2022
- 4. Tachibana, *et al.*, ISIRV oral presentation, Oct 20, 2021; Unoh, *et al.*, bioRxiv 2022; Sasaki, *et al.*, bioRxiv 2022; Yotsuyanagi, *et al.*, ECCMID oral presentation, Apr 24, 2022
- 5. Oral bioavailability in rats for EDP-235, nirmatrelvir, and S-217622
- 6. AUC lung to plasma ratio in rats (EDP-235, nirmatrelvir, S-217622)
- 7. Data for nirmatrelvir and S-217622 generated by Enanta
- * All potency values versus ancestral (A) lineage unless indicated

EDP-235 is a Potent 3CLpro Inhibitor with Potential as a Best-in-
 © Class Antiviral Treatment for SARS-CoV-2 Infection

- Novel, oral, directing—acting antiviral specifically designed to target the SARS-CoV-2 protease
- Nanomolar potency against emerging SARS-CoV-2 variants (including Delta & Omicron) with high barrier to resistance observed in multiple cellular models
- Generally safe and well-tolerated up to 400 mg doses for 7 days in humans
- Good distribution into key target tissues providing the potential to minimize post-treatment viral rebound and/or possible viral replication persistence linked to long COVID
- Phase 2 clinical trial of EDP-235 for COVID-19 treatment will initiate in 4Q of 2022

Emerging data support a convenient EDP-235 dosing regimen, targeting one pill, once-daily effective against COVID-19 variants of concern

Acknowledgements

Enanta Pharmaceuticals, Inc.'s SARS-CoV-2 Team:

- Senior Vice President & Chief Scientific Officer: Y. S. Or
- DMPK
 - Y. Li
 - T.Z. Zang
 - L. Xu
 - D. Leonard
 - S.C. Zhang
 - C. Kerr
 - M. Huang
 - J. Kibel
 - J. Klaene
 - L. J. Jiang

- In Vivo Pharmacology
 - K. Hoang
 - S. L. Chan
 - T. Greizer
- Virology
 - M. Rhodin
 - M. Vaine
 - A. Balakrishnan
 - N. McAllister
 - T. Cressey
 - B. Goodwin

- Chemistry
 - R.C. Shen
 - X.C. Xin
 - W. Li
 - X.R. Gao
 - J. J. Zhang
 - H. Cao
 - J. Long
 - B. Wang
 - M. Rhodes
 - Y. He
 - G.Q. Wang

Toxicology

- G. Hoover
- B. Yamamoto
- K. Daniels

Enanta Pharmaceuticals

Thank you!

Questions?