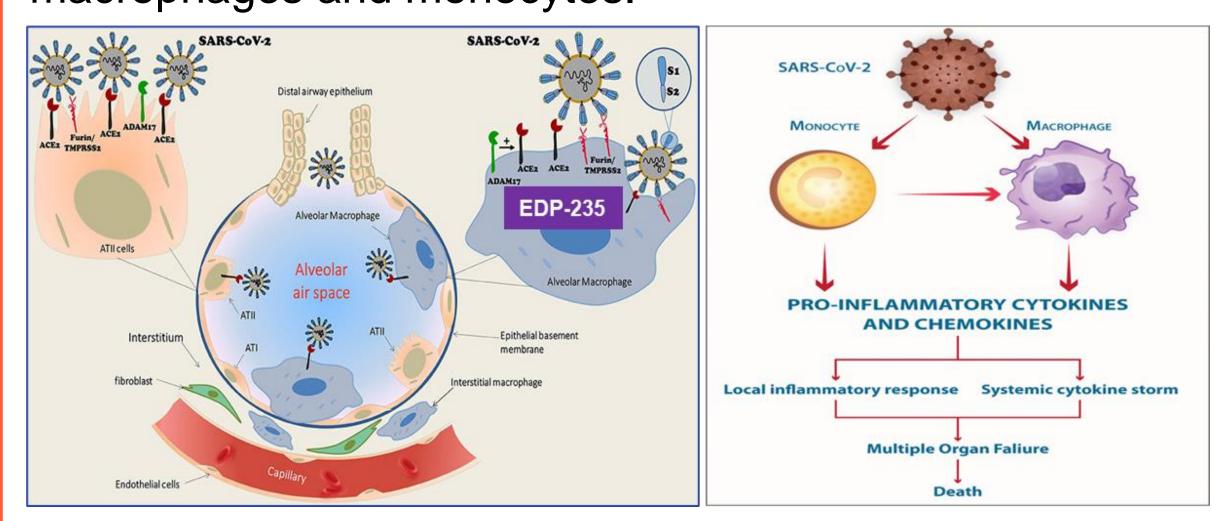


EDP-235, a Potent and Once-Daily Oral Antiviral, Demonstrates Excellent Penetration into Macrophages and Monocytes with the Potential for Mitigation of Cytokine Storm in COVID-19 Patients



Y. Li, T. Z. Zang, L. Xu, D. Leonard, K. Hoang, T. Greizer, S. C. Zhang, C. Foster, M. Huang, J. Kibel, J. Klaene, K. Chan, Y. S. Or & L. J. Jiang Enanta Pharmaceuticals, Inc., Watertown, MA 02472, USA

BACKGROUND

Macrophages, including lung alveolar macrophages (AM), and monocytes are the first line of defense against SARS-CoV-2. Several reports have suggested that SARS-CoV-2 can hijack AM and monocytes for replication and viral spread, which may, in turn, drive the cytokine storm associated with severe COVID-19 ¹⁻⁴.

Herein, we describe one of many advantageous features that EDP-235, a novel and potent SARS-CoV-2 3C-like protease (3CLpro) inhibitor (EC_{50} : 5.1nM) ⁵ under development as a once-daily oral antiviral therapy for COVID-19, displays - excellent penetration into macrophages and monocytes.

https://doi.org/10.1038/s41586-022-04802-1

METHODS

Intracellular uptake of EDP-235 was tested side-by-side with nirmatrelvir in rat lung AM, human monocytes and human macrophages.

To determine the *in vivo* drug distribution into lung AM, rats were dosed orally with 25 mg/kg of EDP-235 or nirmatrelvir and plasma and AM drug levels were analyzed by LC/MS/MS.

REFERENECES

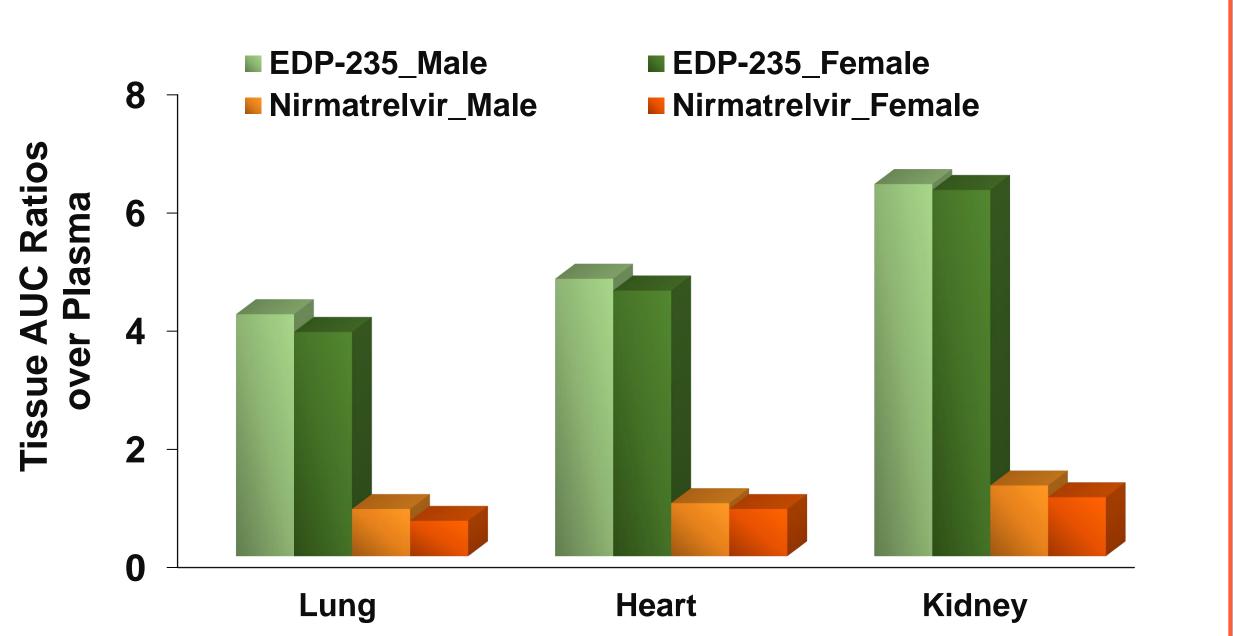
- 1. Monocytes and Macrophages as Viral Targets and Reservoirs. Int. J. Mol. Sci. 2018, 19(9), 2821.
- 2. Macrophages and Monocytes: "Trojan Horses" in COVID-19. Viruses 2021, 13, 2178.
- 3. Inflammasome activation in infected macrophages drives COVID-19 pathology. Nature 606, 585–593, 2022.
- 4. FcγR-mediated SARS-CoV-2 infection of monocytes activates inflammation. Nature 606, 576–584, 2022.
- 5. EDP-235, A Potential Oral, Once-Daily Antiviral Treatment and Preventative for COVID-19. ISIRV WHO Conference, 2021.

Financial Disclosure: All authors are Enanta Employees

RESULTS

EDP-235 is projected to have excellent oral absorption in humans

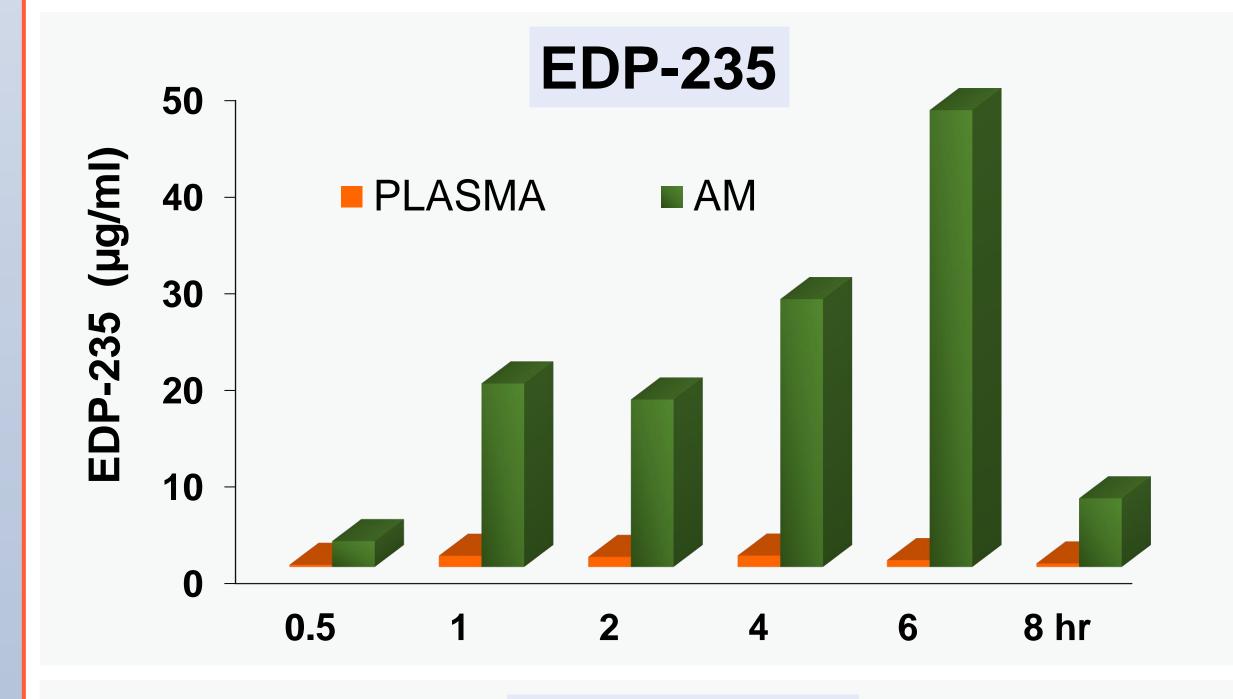
Drug	P _{app} (10	⁻⁶ cm/s)	Efflux Batio	Absorption
Drug	A-to-B	B-to-A	Efflux Ratio	Potential
EDP-235	24.8	19.4	0.8	High
Nirmatrelvir	2.4	12.4	5.2	Medium

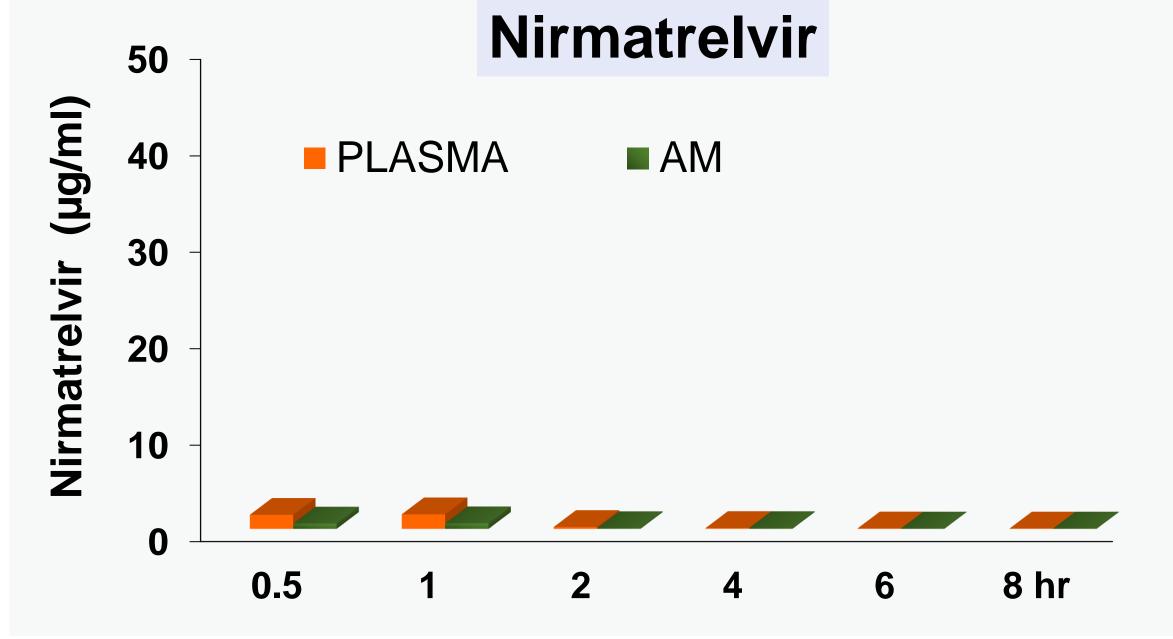

EDP-235 displayed superior plasma exposure and oral bioavailability in preclinical species

Species	Drug 25 mg/kg oral	C _{max} (µg/mL)	AUC _{0-∞} (μg-h/mL)	F (%)
Mayroo	EDP-235	2.8	10.1	100
Mouse	Nirmatrelvir	1.6	2.9	26
Rat	EDP-235	1.9	19.0	95
	Nirmatrelvir	2.5	4.9	31*

Single dose PK; oral formulation: 0.5% Methylcellulose (MC) in water; F(%) = oral bioavailability; AUC = area under the curve; *Oral bioavailability of 31% was reported by Pfizer at the 2021 ACS meeting.

EDP-235 exhibited excellent penetration into SARS-CoV-2 target tissues

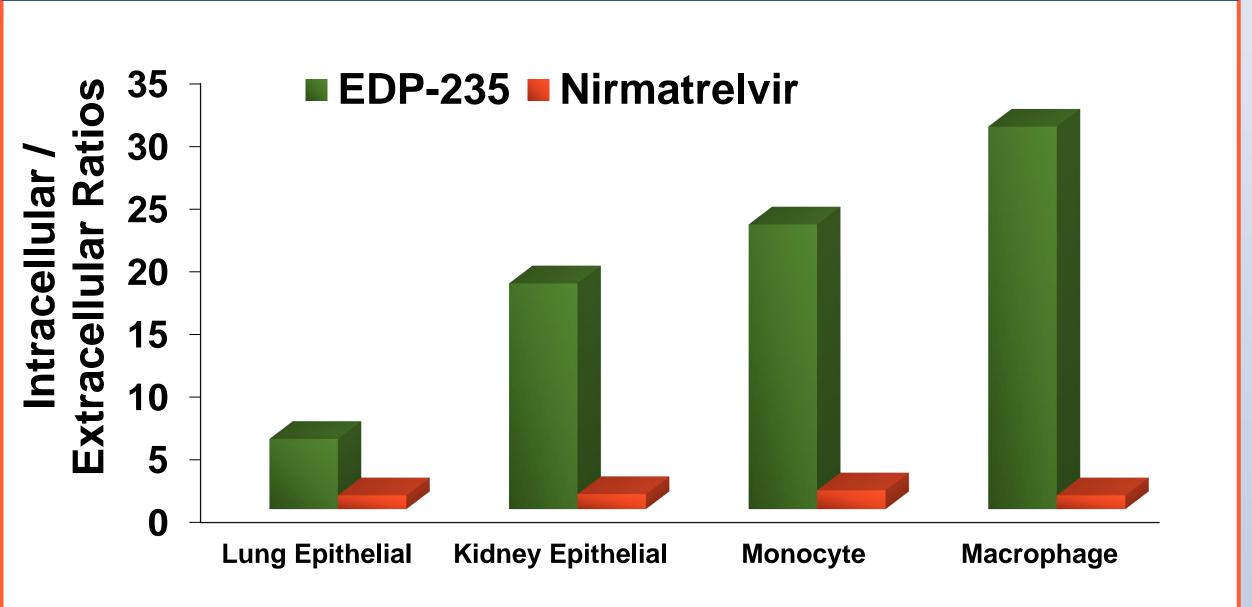

Drug	Sex	AUC Ratios over Plasma			
Drug	Sex	Lung	Heart	Kidney	
EDP-235	M	4.1	4.7	6.3	
	F	3.8	4.5	6.2	
Nirmatrelvir	M	8.0	0.9	1.2	
	F	0.6	8.0	1.0	



RESULTS

EDP-235 exhibited excellent penetration into lung alveolar macrophages (AM) in rats

	Plasma		AM		AUC
Drug	C _{max} (µg/mL)	AUC _{0-∞} (μg-h/mL)	C _{max} (µg/mL)	AUC _{0-∞} (μg-h/mL)	Ratio over Plasma
EDP-235	1.2	9.6	50.7	272.0	28.4
Nirmatrelvir	1.5	2.7	0.5	1.3	0.5



Favorable *ex vivo* and *in vivo* correlation was observed in preclinical species

Drug	Lung		Alveolar Macrophages	
	Ex Vivo	In Vivo	Ex Vivo	In Vivo
EDP-235	8.7	4.1	23.6	28.4
Nirmatrelvir	8.0	0.8	0.6	0.5

RESULTS

EDP-235 has superior *ex vivo* intracellular uptake into human cells, including monocytes and macrophages

EDP-235 preclinical profile suggests potential for best-in-class antiviral treatment for SARS-CoV-2 infection

Properties	EDP-235 ¹	Nirmatrelvir ²	PBI-0451 ³	S-217622 ⁴
Vero Cell EC ₅₀ (nM) (Potency)*	5.1	75	48	69 (Delta)
Oral Bioavailability ⁵	95%	31 – 50%	n/a	97%
Lung Penetration ⁶	4.1	0.8^{7}	~1	0.7^{7}
Projected Efficacious Dose	200 or 400 mg QD	300 mg/100 mg ritonavir BID	700 mg BID	375(D1)/125 (D2-5) QD

- 1. Jiang et al., ISIRV Poster #120, Oct 19, 2021
- 2. Owen et al., Science November 2021; Owen et al. ACS Spring 2021 meeting; EUA fact sheet for healthcare
- 3. Pardes ICAR <u>Presentation</u> March 2022
- 4. Tachibana, et al., ISIRV oral presentation, Oct 20, 2021; Unoh, et al., bioRxiv 2022; Sasaki, et al., bioRxiv 2022; Yotsuyanagi, et al., ECCMID oral presentation, Apr 24, 2022
- 5. Oral bioavailability in rats for EDP-235, nirmatrelvir, and S-217622
- 6. AUC lung to plasma ratio in rats (EDP-235, nirmatrelvir, and S-217622)7. Data for nirmatrelvir and S-217622 generated by Enanta
- * All potency values versus ancestral (A) lineage unless indicated

CONCLUSIONS

- EDP-235, a novel and potent SARS-CoV-2 3CL protease inhibitor, demonstrated excellent penetration into monocytes and macrophages, including lung AM.
- EDP-235 has the potential to eliminate SARS-CoV-2 replication in sentinel immune cells, and thus potentially mitigating the macrophage-mediated cytokine storm in COVID-19 patients.
- Phase 2 Clinical trial of EDP-235 for COVID-19 treatment will initiate in Q4 of 2022.