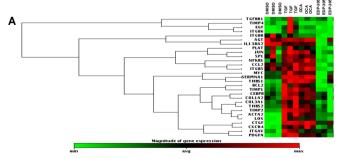
ENANTA Pharmaceuticals #1596

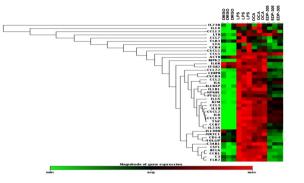
EDP-305, A Novel and Potent Farnesoid X Receptor Agonist, Exhibits Excellent Anti-inflammatory and Anti-fibrotic Activity *In Vitro*

Yang Li, Mary Dinh Le Chau, Guoqiang Wang, Yat Sun Or, and Lijuan Jiang Enanta Pharmaceuticals, Inc. Watertown, MA, USA

To request a pdf of this poster, email **Ijiang@enanta.com**

Background


Nonalcoholic steatohepatitis (NASH) is becoming a major global health burden, with increasing prevalence and incidence worldwide. Inflammation and fibrosis play critical roles in the pathogenesis and progression of NASH ^{1, 2}. Herein, the antiinflammatory and anti-fibrotic activities of EDP-305, a novel and potent Farnesoid X Receptor (FXR) agonist, were tested side-by-side with obsticholic acid (OCA).


Methods

To assess the effects of EDP-305 on genes involved in the inflammatory response, THP1 cells were treated with 50 ng/ml Lipopolysaccharides (LPS) alone, or in combination with either 50nM of EDP-305 or OCA. Hepatic stellate cells (HSC) were treated with 10 ng/ml transforming growth factor beta (TGF β) alone or with a combination of 10 ng/ml of TGF β with 500 nM of EDP-305 or OCA to assess the effects of EDP-305 on liver fibrosis. Key inflammatory and fibrotic genes were analyzed by RT-PCR.

Results

In comparison to OCA, EDP-305 significantly mitigated the inflammatory response associated with NASH. For example, when compared to OCA, EDP-305 significantly (p<0.05) decreased expression of c-c chemokine receptor type 2 (CCR2) by 52%. Furthermore, EDP-305 exhibited an even stronger regulatory effect than OCA (p<0.01) by decreasing expression of nuclear factor kappa B (NFkB) by 42%, toll-like receptor 2 (TLR2) by 45%, tumor necrosis factor α (TNFα) by 36%, interleukin 8 (IL8) by 37%, colony stimulating factor-1 (CSF-1) by 46%, chemokine (C-C Motif) Receptor 1 (CCR1) by 54%, interleukin 16 (IL16) by 41%, and interleukin 1 receptor 1 (IL1R1) by 42%. In addition to its anti-inflammatory effects. EDP-305 also displayed more potent anti-fibrotic effects when compared to OCA. For example, when compared to OCA, EDP-305 significantly (p<0.05) decreased expression of α -smooth muscle actin (α -SMA) by 68%, collagen type 1 α 2 (COL1A2) by 42%, and collagen type 3 α1 (COL3A1) by 57%. Moreover, when compared to OCA, EDP-305 even further decreased expression (p<0.01) of metallopeptidase inhibitor 1 (TIMP1) by 80% and metallopeptidase inhibitor 2 (TIMP2) by 65%, which are critical genes involved in the progression of liver fibrosis.

в

Figure 1. Heat map showing the effects of EDP-305 and OCA on expression of genes involved in inflammation and fibrosis. Relative expression of genes, normalized to control, was calculated from delta C_T values. A, EDP-305 down-regulated inflammatory response genes. B, EDP-305 down-regulated fibrosis genes.

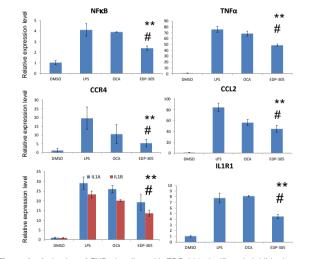


Figure 2. Activation of FXR signaling with EDP-305 significantly inhibited expression of key inflammatory genes *in vitro*. THP1 cells were treated with LPS (50 ng/m) alone or in combination with OCA (50 nM) or EDP-305 (50 nM) for 18 hours (n=3 for each treatment). # P<0.05 compared to LPS; ** P<0.05 compared to OCA.

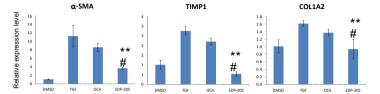


Figure 3. Activation of FXR signaling with EDP-305 significantly inhibited expression of key inflammatory genes *in vitro*. HSCs cells were treated with TGF (10 ng/ml) alone or in combination with OCA (0.5 μ M) or EDP-305 (0.5 μ M) for 18 hours (n=3 for each treatment). # P<0.05 compared to LPS; ** P<0.05 compared to OCA.

Table 1. Regulation of key genes by EDP-305 and OCA

Genes	EDP-305	OCA
Inflammation		
Nuclear factor kappa B (NF-kB) ↓	+++	+
Toll-like receptor 2 (TLR2) ↓	++++	+
Tumor necrosis factor α (TNF α) \downarrow	++++	+
Interleukin 8 (IL8) ↓	++++	+
Interleukin 1α (IL1α) ↓	++++	+
Interleukin 1(IL1β)↓	+++++	+
Interleukin 1 receptor 1 (IL1R1) ↓	++++	+
C-C motif ligand 2 (CCL2) ↓	++++	+
C-C chemokine receptor type 1 (CCR1) ↓	++++	+
C-C chemokine receptor type 2 (CCR2) ↓	++++	+
C-C chemokine receptor type 4 (CCR4) ↓	+++	+
Fibrosis		
Alpha smooth muscle actin (α-SMA) ↓	++	+
Metallopeptidase Inhibitor 1 (TIMP1)↓	+++++	+
Metallopeptidase Inhibitor 2 (TIMP2) ↓	++++	+
Platelet derived growth factor a (PDGFA) \downarrow	++	+
Platelet derived growth factor b (PDGFB) \downarrow	++	+
Collagen type1 alpha 2 (COL1A2) ↓	+++	+
Collagen type 3 alpha 1 (COL3A1) ↓	+++	+
CCAAT/enhancer-binding protein beta (CEBPB) \downarrow	+++	+
"+": Biological effects observed		

"++": EDP-305 efficacy is better than OCA but does not reach statistical significance;

"+++": EDP-305 efficacy is significantly better than OCA with P<0.05;

"++++":EDP-305 efficacy is significantly better than OCA with P<0.01.

Conclusions

EDP-305 is more potent than OCA in reducing expression of key inflammatory and fibrotic genes *in vitro*, thus holding the potential to mitigate the inflammatory and fibrotic responses associated with NASH.

Acknowledgements

We thank Ruichao Shen for preparing all the compounds used in these studies. We also thank Jun Zhang and Kristen Sagliani for their advice on this poster.

References

1. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. NATURE REVIEWS, IMMUNOLOGY. VOLUME 14. | MARCH 2014, 181 2. Hepatic inflammation and fibrosis. Functional links and key pathways. Hepatology. 2015 Mar;61(3):1066-79. doi: 10.1002/hep.27332. Epub 2015 Jan 28.

The 67th Annual Meeting of the American Association for the Study of Liver Diseases, November 11-15, 2016, Boston, MA, USA

Enanta Pharmaceuticals, Inc.