The Liver Meeting[®] 2017 in Washington D.C.

Significant anti-fibrotic efficacy of EDP-305, a highly potent and selective farnesoid X receptor (FXR) agonist, in a rat model of thioacetamideinduced liver fibrosis and cirrhosis

Li-Juan Jiang^{1,*}, Dipankar Bhattacharya², Young J. Yoon², Hsin-I Chou², Mary Chau¹, Yang Li¹, Yat Sun Or¹, Scott L. Friedman² ¹ Enanta Pharmaceuticals, Inc., Watertown, MA, USA; ² Icahn School of Medicine at Mount Sinai, New York, NY, USA

FXR has emerged as an attractive target for the treatment of NASH & PBC NASH = nonalcoholic steatohepatitis; PBC = primary biliary cholangitis

- Clinical validation has been achieved in NASH and PBC with the FXR agonist obeticholic acid (OCA)
- FXR is a nuclear receptor and main regulator of bile acid levels in the liver and small intestine
- FXR responds to bile acids by regulating transcription of key enzymes and transporters
- FXR agonists have ameliorated a number of the pathologies in NASH, including effects on fibrosis, inflammation, lipid metabolism & gluconeogenesis

Matsubara Mol Cell Endocrinol 2013; Neuschwander-Tetri *et a*l, Lancet, 2014

EDP-305 is a potent and selective FXR agonist EDP-305 is >16-fold more potent than OCA and its major metabolites

Compound	FXR (HEK)	TGR5 (CHO)	
	EC50 nM (% efficacy)*		
Obeticholic Acid (OCA) Glyco-OCA Tauro-OCA	130 (150) 360 (155) 250 (100)	380 (72) 720 (157) 540 (161)	
EDP-305	8 (152)	> 15,000 (NS)	

* Transporter inserted, FXR efficacy CDCA = 100%; TGR5 efficacy LCA = 100%

Compound concentration (µM)

Y. Li, et al, AASLD 2016 poster 1540

EDP-305 regulates key gene expression *In vitro*

- Bile acid metabolism
 - SHP; FGF19; OST-α; BSEP; CYP7A1
- Lipid metabolism

- LDLR; PCSK9;SREBP-1C; SCD1; CD36; DGAT2; APOB; APOC3; HL; SRB1
- Inflammation
 - NF-κB; TLR2; TLR9; TNFα; IL8; IL1α; IL1β; IL1R1; CCL2; CCR1; CCR4; CEBPB
- Fibrosis
 - α -SMA; TIMP1; TIMP2; PDGF α ; PDGF β ; COL1A2; COL3A1; ITGB6
- Glucose metabolism
 - FGF21; IRS2; GLUT2; GLUT4; FOXO1

Enanta AASLD 2016 posters 1540, 1568 & 1596

EDP-305 demonstrates its efficacy in eight (8) animal models

- Mouse model
 - FXR mechanism of action: SHP, CYP7A1 and FGF15 (Enanta Pharmaceuticals, Inc.)
- NASH models
 - STAM[™] mouse NASH model (Stelic, Japan)
 - MCD-fed mouse steatohepatitis model with progressive fibrosis (Harvard/BIDMC)
 - Choline-deficient, L-amino acid-defined, high-fat-diet, mouse NASH model (Harvard/MGH)
 - Diet-induced NASH mouse model (Physiogenex, France)
- Biliary fibrosis models
 - Mdr2-/- mouse biliary fibrosis model (Harvard/BIDMC)
 - Rat bile duct ligation model (Harvard/MGH)
- Liver fibrosis/cirrhosis model
 - Thioacetamide-induced rat liver fibrosis/cirrhosis model (Icahn School of Medicine at Mt. Sinai)

EDP-305 protects rats and mice from liver steatosis and injury

- Lowers liver and plasma lipid contents (including cholesterol, TG & FFA)
- Reduces ballooning & fibrosis progression, and reduces inflammation
- Lowers NAFLD Activity Score (NAS)

Rat model of thioacetamide(TAA)-induced liver fibrosis and cirrhosis Study design

maceuticals

© 2017 Enanta Pharmaceuticals, Inc. | 6

EDP-305 significantly reduced fibrosis progression in rats Therapeutic Intervention Results

	Sirius red positive tissue (%)	Reduction in fibrosis (%)
Vehicle	100 %	
EDP-305 10 mpk	50 %	50 % ↓
EDP-305 30 mpk	45 %	55 % ↓

Pharmaceuticals

 Pathology scores (including Scheuer score, Ishak score, Ductular reaction/Metaplasia scoring) also decreased in parallel with collagen morphometry

EDP-305 significantly improved liver/spleen weights & serum clinical chemistry **Therapeutic Intervention Results**

- Progression of fibrosis/cirrhosis causes liver to body weight ratios to decrease, spleen to liver weight ratios to increase (Splenomegaly), and serum AST levels to increase
- EDP-305 significantly reduced the progression of fibrosis, which led to increased liver to body weight ratios and decreased spleen to liver weight ratios. EDP-305 also improved serum clinical chemistry (e.g., AST) for liver function testing

Liver to body weight ratio

Spleen to liver weight ratio

p<0.01

**

30 mpk

Serum AST

EDP-305 decreases collagen deposition in rats with established cirrhosis Cirrhosis Reversal Results

	Sirius red positive tissue (%)	Reduction in fibrosis (%)
Vehicle	100 %	
EDP-305 10 mpk	89 %	11 % ↓
EDP-305 30 mpk	75 %	25 % ↓

Pharmaceuticals

EDP-305 down-regulated key fibrogenic genes Cirrhosis Reversal Results

	% Reduction compared to vehicle
Collagen type1 alpha 2 (Col1a2)	65% ↓
Alpha smooth muscle actin (α-SMA)	23%↓
Platelet derived growth factor β (PDGF β)	40%↓
Matrix metallopeptidase 2 (MMP2)	52% ↓
Tissue inhibitor of metalloproteinase-1 (TIMP1)	37%↓
Tissue inhibitor of metalloproteinase-2 (TIMP2)	11%↓

Conclusions & EDP-305 development

- EDP-305 is a potent FXR receptor agonist with no/minimal activity against other nuclear receptors and TGR5
- EDP-305 exhibits excellent anti-fibrotic efficacy in rats with ongoing TAA-induced fibrosis
- It also decreases collagen deposition in rats with established cirrhosis
- These results warrant further clinical study of EDP-305 for the treatment of NASH and PBC
- Phase 1 study in healthy subjects and subjects with presumed NAFLD has recently been completed
- Fast Track Designation has been granted by FDA

EDP-305 posters in this meeting

- "A novel FXR agonist EDP-305 potently suppresses hepatic stellate cell activation and hepatic fibrosis in chronic mouse models of biliary and metabolic liver disease" (#367)
 - Presented from 8 am 5:30 pm on Oct 20

"EDP-305 favorably regulates lipoprotein mechanism *in vitro*" (#1988)

- Selected as "Presidential Poster of Distinction"
- To be presented from 8 am 5:30 pm today (Oct 23)

Acknowledgement

Enanta

Yat Sun Or Yang Li Mary Chau Manuel Roqueta-Rivera Kelsey Garlick Jianyu Shang **Guoqiang Wang** Ruichao Shen Yong He Jiang Long **Bin Wang** Jun Ma Brett Granger

Mount Sinai

Scott L. Friedman Dipankar Bharracharya Young J. Yoon Hsin I. Chou

THANKS FOR YOUR ATTENTION

