High Throughput Screen to Identify Non-Nucleoside Small **Molecule Inhibitors of SARS-CoV-2 RNA-dependent RNA** polymerase

T. Cressey, A. Balakrishnan, J. Panarese, J. Kass, Y.S. Or, B. Goodwin, M. Vaine

Enanta Pharmaceuticals, Inc. Watertown, MA USA 02472

BACKGROUND

- Developing direct-acting antivirals against SARS-CoV-2, the causative agent of COVID-19, is important for preventing severe disease.
- Remdesivir, a nucleoside analog targeting the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) has been successfully used for the treatment of hospitalized or highrisk patients with COVID-19 but its utility is limited by the parenteral delivery route.
- Identification of non-nucleoside RdRp inhibitors could be useful additions to the SARS-CoV-2 treatment arsenal.
- Here, we describe a high throughput screen to identify non-nucleoside inhibitors of the SARS-CoV-2 RdRp. A library of ~400,000 small molecules was screened for RdRp inhibition which resulted in identification of a novel class of nsp12-nsp8 disrupting small

RESULTS

12 compounds disrupt nsp12:nsp8 protein:protein interactions

	Structural cluster	Compound ID	IC ₅₀ fold-shift with increasing:			
		Compound ID	nsp8	nsp7	RNA	NTP
	Α	EPS-1604	5.5	1.6	0.9	0.53
		EPS-1970	6.9	1.1	0.7	0.65
	В	EPS-1731	6.6	1.1	1.0	0.60
		EPS-1975	5.8	1.1	0.8	0.63
	С	EPS-1978	11.0	1.6	0.9	0.59
		EPS-1979	12.0	2.2	1.4	0.51
		EPS-1980	>5.3	1.5	2.2	0.51
	Individual hits	EPS-1955	13.2	1.3	0.7	0.61
		EPS-1956	3.4	1.4	0.8	0.78
		EPS-1605	4.3	1.4	0.7	0.61
		EPS-1984	1.7	1.3	1.5	0.80
		EPS-1987	NA	NA	1.1	0.58
		EPS-2000	>1.4	1.6	1.2	NA
		EPS-2003	>8.3	1.1	1.2	0.62
		EPS-2004	13.2	1.5	1.1	0.63
	RNA competitive control	suramin	1.2	1.3	5.0	0.66
	NTP competitive control	3' dGTP				>12

METHODS

Materials. Recombinant SARS-CoV-2 nsp7 and nsp8 were expressed and purified from *E. coli*. Recombinant SARS-CoV-2 nsp12 was expressed and purified from Sf21 cells. RdRp activity was determined using the AmNS-UTP utilization assay which included an RNA primer (5'-GCUAUGUGAGAUUAAGUUAU-3') AmNS and an RNA template (5'-(A)₂₀UGCUGCAUAACUUAAUCUCACAUAGC-3'). The Kinase-Glo assay RNA template was 5'- $(U)_{30}$ AUAACUUAAUCUCACAUAGC-3'.

AmNS-UTP utilization. RdRp activity assays were assembled in 1536-well plates (6 µL) for HTS or 384-well (20 µL) plates for hit confirmation. Reactions were incubated at 30°C for 3 hours and readout with excitation/emission 340/460 nm. Assays contained 50 mM Tris HCI (pH 8), 10 mM KCI, 0.01% Triton X-100, 1 mM DTT, 6 mM MgCl₂, 20 μM ATP, 20 μM CTP, 20 μM GTP, 13 μM AmNS-UTP, 500 nM primer/template pair, 500 nM nsp7, 1000 nM nsp8, 100 nM nsp12.

Figure 1. AmNS-UTP RdRp assay schematic.

Kinase-Glo assay. RdRp activity assays were assembled in 384-well (15 µL) plates, incubated at 30°C for 30 minutes followed by luminescence detection on an Envision plate reader after addition of Kinase-Glo (Promega). Assays contained 50 mM Tris HCI (pH 8), 10 mM KCI, 0.01% Triton X-100, 1 mM DTT, 6 mM MgCl2, 5 µM ATP, 500 nM primer/template pair, 500 nM nsp7, 1000 nM nsp8, 100 nM nsp12. ATP RNA RdRp

Table 2. IC_{50} fold-shifts in RdRp biochemical assays under different concentrations of nsp8 (1 or 8 μ M), nsp7 (0.125 or 1 μ M), RNA template (0.5 or 5 μ M), or NTPs (0.6 or 20 μ M) for compounds with IC₅₀s <10 µM in at least one biochemical RdRp assay. Predicted fold shifts were ~5.7, 5.7, 5.7, and 22 for nsp8, nsp7, RNA, and NTP competitive inhibitors respectively. 12 compounds disrupt nsp12:nsp8 protein:protein interactions.

Figure 2. Kinase-Glo RdRp assay schematic.

RESULTS

High throughput screen summary

- ~400,000 compounds from library screened at 30 μM 400K
- 5143 confirmed hits at 30 µM 5143
 - 857 compounds selected for dose response
 - 624 compounds removed due to purity rating, activity in intercalator counterscreens, redox activity, or assay interference
 - 106 compounds removed after final visual inspection identified undesired substructures, low quantitative estimate of drug-likeness (QED), or high potency efficiency index (PEI)

Figure 5. Representative curves of RdRp biochemical assays under different concentrations of (A) nsp8, (B) nsp7, (C) RNA, and (D) NTPs. IC₅₀ shifts observed for EPS-1970 for with increasing nsp8, but not nsp7 suggest competition with the nsp12:nsp8 protein:protein interactions. IC₅₀ shifts with suramin and 3' dGTP with RNA and NTPs respectively as expected for competitive inhibitors.

Compound ID	NanoDSF ΔT°C		
EPS-1970	-3.5		
EPS-1979	2		
EPS-1987	-0.9		
EPS-2000	2		
EPS-2003	-2		
suramin	-3.5		

 Table 3. Nano differential scanning
fluorimetry with nsp12 and compounds. Five compounds destabilize or stabilize nsp12, suggesting binding to nsp12.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 m

127

957 001

233

• Cmax >50% filter followed by efficiency driven selection afforded 94 compounds for powder confirmation - lipophilic efficiency (LiPE) & ligand efficiency (LE)

Figure 3. Screening funnel from library to compounds selected for hit confirmation.

Hit confirmation

IC ₅₀ range (µM)	# compounds AmNS	# compounds Kinase-Glo	pIC 50 Kinase-Glovs. Am NS ^{6.5} 7
<10	11	13	<u><u><u>o</u></u> 6.0 -</u>
10-30	13	18	Ψ Ψ Φ 5.5 -
30-50	10	12	
50-75	8	1	$R^2 = 0.7$
75-100	5	2	<u>4.5</u> <u>4.5</u> <u>6</u>
Total compounds with confirmed activity	47	46	4.0 3.5 4.0 4.5 5.0 5.5 6.0 pIC 50 (A m N S)

Table 1. Number of compounds with $IC_{50}s < 10$, 10-30, 30-50, 50-75, and 75-100 µM in AmNS and Kinase-Glo RdRp assays. Compounds used were prepared from fresh powder.

Figure 4. Correlation of pIC₅₀s of Kinase-Glo vs. AmNS RdRp assays.

 $R^2 = 0.76$

6.0 6.5

CONCLUSION

- After counter-screens to remove RNA intercalators, redox cyclers, and compounds with undesirable medicinal chemistry properties, 15 compounds from 11 structural families with half-maximal inhibitory concentrations ($IC_{50}s$) <10 μ M were selected for mechanism of inhibition studies.
- None of the compounds were RNA or NTP competitive inhibitors.
- Biochemical assays and analytical size-exclusion chromatography showed 12 compounds disrupted nsp12-nsp8 protein-protein interactions.
- Nano differential scanning fluorimetry analysis suggested 5 compounds target nsp12 directly.
- This high throughput screen identified multiple, structurally diverse, non-nucleoside SARS-CoV-2 RdRp inhibitors as potential starting points for hit optimization.

Acknowledgements

We thank Evotec, Inc. for protein production and assay development support.

DISCLOSURE: All authors are either current or former employees of Enanta Pharmaceuticals, Inc. and received salary and stock compensation.

36th International Conference on Antiviral Research, 2023, Lyon, France

© 2023 Enanta Pharmaceuticals, Inc.