EDP-235, a Potent, Once-daily, Oral Antiviral, Demonstrates Excellent Penetration into SARS-CoV-2 Target Tissues, with the Potential for Mitigation of Viral Rebound in COVID-19 Patients

Y. Li, T. Z. Zang, L. Xu, D. Leonard, K. Hoang, T. Greizer, S. C. Zhang, C. Foster, M. Huang, J. Kibel, J. Klaene, K. Chan, Y. S. Or & L. J. Jiang

Enanta Pharmaceuticals, Inc., Watertown, MA 02472, USA

BACKGROUND

COVID-19 rebound is characterized by a recurrence of symptoms or a new positive viral test after testing negative.

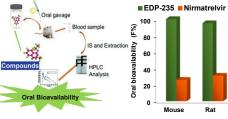
Up to 27% of COVID-19 patients experience viral rebound after Paxlovid (ritonavir-boosted nirmatrelvir) treatment ¹⁻⁵. Several reports suggest that viral rebound can occur if SARS-CoV-2 remains in parts of the body to which Paxlovid (specifically nirmatrelvir) has limited access

Herein, we report that EDP-235, a novel and potent SARS-CoV-2 3Clike protease inhibitor 10, demonstrates superior penetration into SARS-CoV-2 target tissues in preclinical species compared to nirmatrelvir.

METHODS

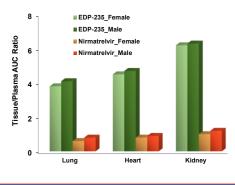
To determine the in vivo drug distribution into SARS-CoV-2 target tissues, rats were dosed orally with 10 mg/kg of EDP-235 or nirmatrelvir, and drug concentrations in plasma and different tissues were analyzed by LC/MS/MS.

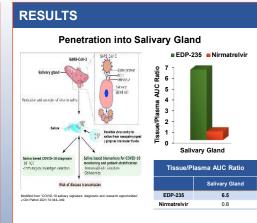
RESULTS


EDP-235 is projected to have excellent oral absorption in humans

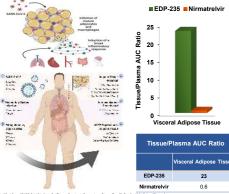
P _{app} (10 ⁻⁶ cm/s)		Efflux	Absorption
A-to-B	B-to-A	Ratio	Potential
24.8	19.4	0.8	High
2.4	12.4	5.2	Medium
	A-to-B 24.8	A-to-B B-to-A 24.8 19.4	A-to-BB-to-ARatio24.819.40.8

EDP-235 has superior plasma exposure and oral bioavailability in preclinical species


Species	Drug 25 mg/kg oral	C _{max} (µg/mL)	AUC _{0-∝} (µg-h/mL)	F (%)
Mouse	EDP-235	2.8	10.1	100
	Nirmatrelvir	1.6	2.9	26
Rat	EDP-235	1.9	19.0	95
Rat	Nirmatrelvir	2.5	4.9	31*
Single dose PK; cral formulation: 0.5% methylcellulose (MC) in water; F(%) = oral bioavailability; AUC = area under the curve; *Oral bioavailability of 31% was reported by Pfizer at the 2021 ACS meeting.				



EDP-235 exhibits excellent SARS-CoV-2 target tissue distribution


Drug	Sex	Tissue/Plasma AUC Ratio		
		Lung	Heart	Kidney
EDP-235	F	3.8	4.5	6.2
	м	4.1	4.7	6.3
Nirmatrelvir	F	0.6	0.8	1.0
	М	0.8	0.9	1.2

Penetration into Adipose Tissue

inis Disease 20192

ACKNOWLEDGEMENTS

We would like to thank Drs. Guoqiang Wang, Ruichao Sheng and Jiajun Zhang at Enanta for their support. Financial Disclosure: All authors are Enanta employees.

Poster # 523

RESULTS

EDP-235 preclinical profile suggests potential for best-in-class antiviral treatment for SARS-CoV-2 infection

Properties	EDP-2351	Nirmatrelvir ²	PBI-04513	Ensitrelvir ⁴
Vero Cell EC ₅₀ (nM) (Potency)*	5.1	75	48	69 (Delta)
Oral Bioavailability5	95%	31 – 50%	n/a	97%
Lung Penetration ⁶	4.1	0.87	~1	0.77
Projected Efficacious Dose	200 or 400 mg QD	300 mg/100 mg ritonavir BID	700 mg BID	375 mg(D1)/125 mg (D2-5) QD

Jiang et al., ISIRV Poster #120, Oct 19, 2021

- Owen et al., Science, November 2021; Owen et al. ACS Spring 2021 meeting; EUA fact sheet for healthcare providers.
- Pardes ICAR Presentation, March 2022,
- Tachibana, et al., ISIRV oral presentation, Oct 20, 2021; Unoh, et al., bioRxiv 2022; Sasaki, et al., bioRxiv 2022; Yotsuyanagi, et al., ECCMID oral presentation, Apr 24, 2022
- Oral bioavailability in rats for EDP-235, nirmatrelvir, and ensitrelvir.
- ALIC lung to plasma ratio in rats (EDP-235 pirmatrelvir) and ensittelvir)
- Data for nirmatrelvir and ensitrelvir generated by Enanta * All potency values versus ancestral (A) lineage unless indicated

CONCLUSIONS

- Preferential target tissue distribution and penetration may enable EDP-235 to minimize viral rebound in COVID-19 patients as a first-line treatment.
- A Phase 2 clinical trial of EDP-235 for the treatment of COVID-19 is fully enrolled (ClinicalTrials.gov Identifier NCT05616728).

REFERENCES

Virmatrelvir–Ritonavir and Viral Load Rebound in Covid-19. The New England Journal Medicine 387:11 Sentember 15

- 2022. The Packvol Rebound Study: A Prospective Cohort Study to Evaluate Viral and Symptom Rebound Differences Between Packvol and Untrasted COVID-18 Panticopants. medRvk: doi: https://doi.org/10.1101/2022.11.14.22282165. doi:https://doi.org/10.1101/2022.08.12228774. URL: https://doi.org/10.1101/2022.08.122287744. COVID-19 Rebound After Packvol Treatment During Omicion BA.5 ve BA.2.12.1. medRvk preprint doi: https://doi.org/10.1101/2022.08.12297454. Viral Kinetics of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV/2) Omicion Intelcion in mRNA-Viral Kinetics of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV/2) Omicion Intelcion in mRNA-virus in streat-orong and syngrams. doi: 10.1101/2022.08.04.22278378. SARS-CoV-2 Infection and Persistence in the Human Body and Brain at Autopsy. Nature. 612(7941): 758–763, 2022

© 2023 Enanta Pharmaceuticals. Inc.