EDP-235, a Potent, Once-Daily, Oral Antiviral, Demonstrates Potential for Treatment and Prevention of Long COVID

<u>Tianzhu Zang</u>, Yang Li, Lisha Xu, Daniel Leonard, Khanh Hoang, Tim Greizer, Shucha Zhang, Caroline Kerr, Meng Huang, Jonathan Kibel, Siu-Lung Chan, Joshua Klaene, Yat Sun Or, Li-Juan Jiang Enanta Pharmaceuticals, Inc., Watertown, MA 02472, USA

BACKGROUND

- Of COVID-19 survivors, it was estimated that up to 29% have developed symptoms characteristic of long COVID, a health emergency with no approved treatment. While there may be multiple factors causing long COVID symptoms, studies have shown that SARS-CoV-2 is capable of persisting in a wide range of organs for months after the initial infection, which may drive illness in some long COVID patients¹⁻⁴.
- Herein, we report that EDP-235, a novel and potent SARS-CoV-2 3C-like protease inhibitor being investigated for treatment of initial SARS-CoV-2 infection in an on-going Phase 2 trial⁵, demonstrates superior distribution in target tissues compared to nirmatrelvir, the 3C-like protease inhibitor in Paxlovid.

RESULTS (continued)

EDP-235 exhibits good plasma exposure and pharmacokinetic profiles in dogs

Species	Drug	Route	Sex	C _{max} (µg/mL)	T _{max} (hr)	t _{1/2} (hr)	V _d (L/kg)	CL _p (L/hr/kg)	AUC _{₀-∞} (µg∙hr/mL)	F (%)
Dog	EDP-235	IV	М	1.0	0.1	9.2	2.9	0.2	5.8	
			F	0.8	0.1	6.6	3.0	0.3	3.9	
		РО	М	2.1	11.3	13.6			58.0	50.3
			F	1.7	2.7	15.9			52.0	66.5

AUC_{0- ∞}=Area under the curve from the time of dosing (time zero) to infinity; CLp=Plasma clearance; C_{max}=Maximum observed concentration; F: bioavailability; t_{1/2}=Terminal half-life; T_{max}=Time of maximum observed concentration; V_d=volume of distribution; --: data were not applicable.

Modified from "Long COVID: major findings, mechanisms and recommendations", Nature Reviews Microbiology; 2023 Mar; 21(3): 133-146.

METHODS

- Intracellular uptake of EDP-235 was tested side-by-side with nirmatrelvir in human and rat cells.
- To determine the *in vivo* drug distribution in SARS-CoV-2 target tissues, rats were dosed orally with 25 mg/kg of EDP-235 or nirmatrelvir. Drug levels in plasma and target tissues—including potential COVID-19 tissue reservoirs: salivary glands, adipose tissues, alveolar macrophages—were measured by LC/MS/MS.

RESULTS

F%)

EDP-235 displays superior plasma exposure and oral bioavailability in preclinical species and is projected to have excellent oral absorption in humans

Oral Bioavailability in Preclinical Species

■ Nirmatrelvir ■ EDP-235

EDP-235 has favorable intracellular uptake and distribution in SARS-CoV-2 target tissues and exhibits a positive *in vitro-in vivo* correlation

Compound	Sex	Tissue/Plasma AUC Ratio								
		Lung	Heart	Salivary Gland	Kidney	Adipose Tissue	Alveolar Macrophage			
EDP-235	М	4.1	4.7	6.5	6.3	23.0	28.4			
Nirmatrelvir	Μ	0.8	0.9	0.8	1.2	0.6	0.5			

EDP-235 has distinguished intracellular uptake into many human cell types, and is projected to have advantageous tissue distribution in humans

Pot	EDP-235	1.9	19.0	95.0			
Ναι	Nirmatrelvir	2.5	4.9	31.0*			
Dog	EDP-235	2.1	58.0	50.3			
	Nirmatrelvir						
Majakay	EDP-235	0.7	7.0	49.3			
WORKEY	Nirmatrelvir	3.6	2.1	8.5**			
Single dose PK; oral formulation: 0.5% methylcellulose (MC) in water; F(%) = oral							

Single dose PK; oral formulation: 0.5% methylcellulose (MC) in water; F(%) = oral bioavailability; AUC0- ∞ = area under the curve from zero to infinity time; Cmax = maximum observed concentration. ; *Reported by Pfizer at 2021 ACS Meeting **Nirmatrelvir p.o. formulation for monkey: 2% Tween 80/ 98% of 0.5% MC in water; Owen et al., Science 374, 1586–1593 (2021).

EDP-235 has favorable pharmacokinetic properties in monkeys

Species	Drug	Route	Sex	C _{max} (µg/mL)	T _{max} (hr)	t _{1/2} (hr)	V _d (L/kg)	CL _p (L/hr/kg)	AUC _{0-∞} (µg∙hr/mL)	F (%)
Monkey	EDP-235	IV	Μ	0.5	0.1	2.1	5.5	1.8	0.7	-
			F	0.7	0.1	1.8	4.2	1.5	0.9	-
		РО	Μ	0.7	5.3	4.8			6.9	49.3
			F	1.0	4.7	2.9			8.9	49.4

AUC_{0- ∞}=Area under the curve from the time of dosing (time zero) to infinity; CL_p=Plasma clearance; C_{max}=Maximum observed concentration; F: bioavailability; t_{1/2}=Terminal half-life; T_{max}=Time of maximum observed concentration; V_d=volume of distribution; --: data were not applicable. * Owen et al., Science 374, 1586–1593 (2021).

REFERENCES

- 1. SARS-CoV-2 infection and persistence in the human body and brain at autopsy, Nature. 612 (7941) (2022) 758-763.
- Case report: Persistence of residual antigen and RNA of the SARS-CoV-2 virus in tissues of two patients with long COVID, Front Immunol. 13 (2022) 939989.
- 3. Postacute COVID-19 is characterized by gut viral antigen persistence in inflammatory bowel diseases, Gastroenterology. 163(2)

CONCLUSIONS

- Preferential target tissue distribution and cell penetration shown in preclinical studies potentially enable EDP-235 to target viral reservoirs and minimize viral persistence in long COVID patients.
- Administered as a treatment for acute COVID, EDP-235 could potentially prevent progression to long COVID and be a first-line treatment for long COVID.
- A Phase 2 clinical trial of EDP-235 for the treatment of COVID-19 is fully enrolled (ClinicalTrials.gov Identifier NCT05616728).

ACKNOWLEDGEMENT

4. SARS-CoV-2 infection in patients seemingly recovered from COVID-19, J Pathol. 2023 Mar;259(3):254-263.

5. EDP-235, a potential oral, once-daily antiviral treatment and preventative for COVID-19. ISIRV WHO Conference, 2021.

We would like to thank Drs. Guoqiang Wang, Ruichao Shen and Jiajun Zhang at Enanta for their support.

Financial Disclosure: All authors are Enanta employees.

33rd European Congress of Clinical Microbiology & Infectious Diseases, Copenhagen, Denmark, April 15-18, 2023.

© 2023 Enanta Pharmaceuticals, Inc.