Pharmacokinetics of EDP-323, a Potent, Once-Daily, Oral Antiviral Treatment for Respiratory Syncytial Virus

<u>Tianzhu Zang</u>, Daniel Leonard, Shucha Zhang, Jonathan Kibel, Meng Huang, Lisha Xu, Yang Li, Caroline Kerr, Khanh Hoang, Tim Greizer, Siu-Lung Chan, Joshua Klaene, Yat Sun Or and Li-Juan Jiang Enanta Pharmaceuticals, Inc., Watertown, MA 02472, USA

BACKGROUND

- Respiratory syncytial virus (RSV) causes substantial morbidity and mortality in infants, the elderly, and immunocompromised patients. To date, there is no broadly effective antiviral therapy approved for RSV.
- To satisfy this unmet medical need, we present EDP-323, a potent RSV L-protein inhibitor currently in clinical development as a once-daily, oral antiviral therapy for RSV.
- EDP-323 inhibits viral replication in vitro with an EC₅₀ of 0.16 nM against RSV.^a

a. RSV-A Long strain in a three-dimensional primary human airway epithelial cell model

 Here, we describe the preclinical pharmacokinetics (PK) of EDP-323.

RNA polymerase (L)

RNA polymerase (L)

Phosphoprotein (P)

Attachment protein (G)

Modified from "RSV Structure by Dr. Peter N. Schochet".
https://www.pedilung.com/wp-content/uploads/2016/01/respiratory-syncytial-virus-RSV.jpg

METHODS

Human oral absorption and metabolic stability were tested using Caco-2 cells and human liver microsomes, respectively. The PK profile of EDP-323 was determined in mice, rats, and dogs following a single intravenous (IV) dose of 5 mg/kg or oral (PO) dose of 25 mg/kg. Human PK was predicted based on preclinical *in vivo* data and ADME properties.

RESULTS

A. Predicted high human oral absorption and low plasma clearance

Compound	P _{app} (10 ⁻⁶ cm/s)		Efflux Ratio	Plasma clearance CL _p	
	A-to-B	B-to-A	(B-A P _{app} / A-B P _{app})	(L/h/kg)	
EDP-323	16.1	25.8	1.6	0.2	

 P_{app} = permeability coefficient measured in human colon Caco-2 cells; A = apical side; B = basal side.

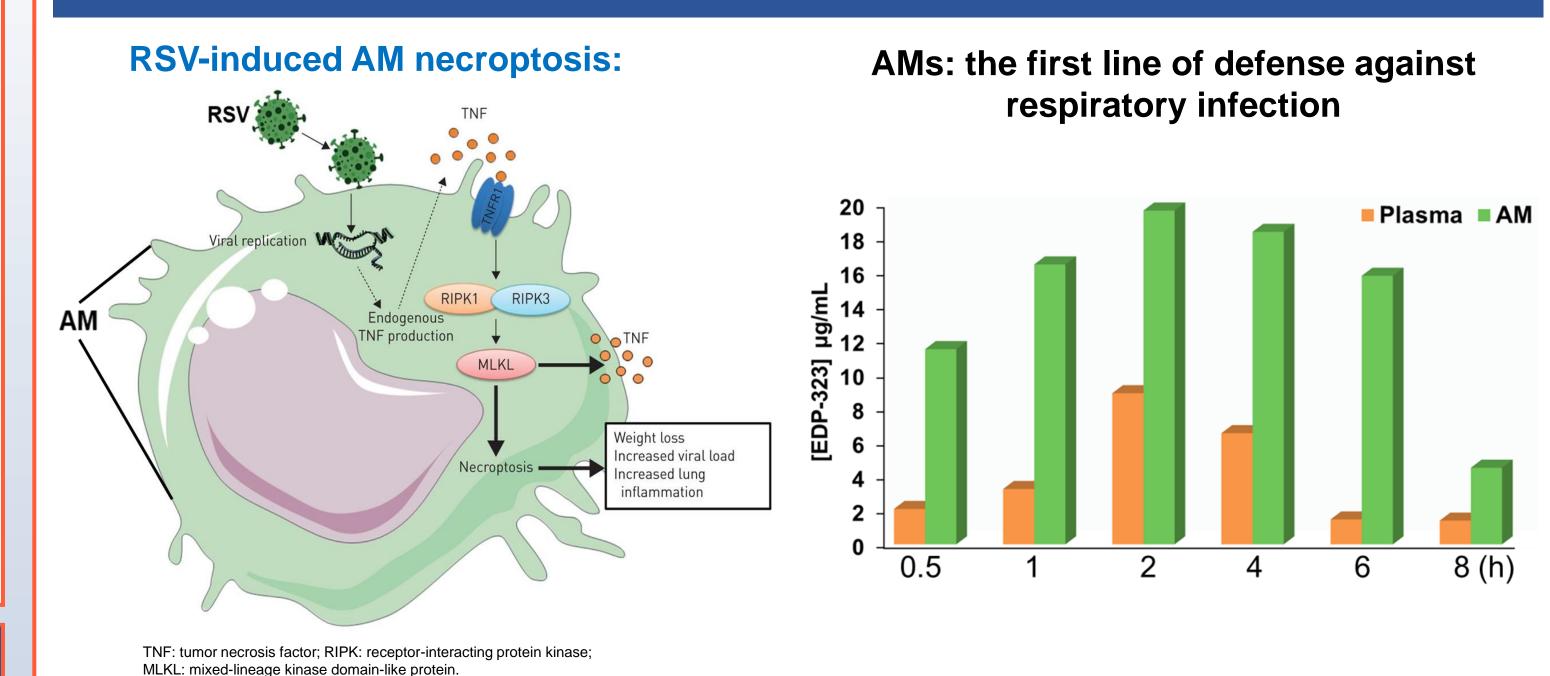
B. Excellent oral bioavailability and plasma exposure across multiple species

Compound 25 mg/kg PO	Species	C _{max} (µg/mL)	AUC _{0-∞} (μg∙h/mL)	F (%)
EDP-323	Mouse	3.4	7.1	34.8
	Rat	7.2	34.9	70.4
	Dog	4.3	48.0	50.5

Oral dosing formulation: 0.5% Methylcellulose (MC) in water; F(%) = oral bioavailability; $AUC_{0-\infty}$ = area under the curve from zero to infinity time; C_{max} = maximum observed concentration.

C. Good lung tissue distribution with no off-target distribution to brain

	Compound	Species	Tissue / Plasma AUC Ratio			
			Lung	Brain		
	EDP-323	Mouse	1.5	0.03		
		Rat	0.8	0.03		
	Oral dose: 25 mg/kg in mice and 10 mg/kg in rats.					


ACKNOWLEDGEMENT

We thank Drs. Jianming Yu and In Jong Kim for the compound synthesis at Enanta Pharmaceuticals, Inc.

Financial Disclosure: All authors are Enanta employees.


RESULTS (continued)

D. Favorable penetration into lung alveolar macrophages (AMs) in rats

Compound 25 mg/kg, PO	Plasma		AM		
	C _{max} (μg/mL)	AUC ₀₋₂₄ (μg•h/mL)	C _{max} (μg/mL)	AUC ₀₋₂₄ (μg•h/mL)	AUC Ratio: AM / Plasma
EDP-323	9.1	46.2	29.1	173.1	3.7

E. Projected once-daily (QD) oral efficacious dose in humans

"Modified figure from "Leonardo Duarte Santos et al. Eur Respir J 2021;57:2003764

EDP-323 is projected to have a long half-life of 11 hours with an efficacious dose of 100 mg once-daily (QD) in humans.

QD Dose (mg/day)	t _{1/2} (h)	C _{max} (ng/mL)	AUC _{0-∞} (μg∙h/mL)	C ₂₄ Fold over EC ₉₀ (Plasma)*	C ₂₄ Fold over EC ₉₀ (Lung AM)
100	11	223	4	368	1362
200	11	446	8	731	2705
500	11	1115	21	1824	6749
800	11	1783	33	2923	10815
1000	11	2229	42	3654	13520

*EC₅₀ (0.16 nM) and EC₉₀ (0.27 nM) against RSV-A long strain in pHAEC from the presentation: "EDP-323, a Small Molecule L-Protein Inhibitor in Development Against Respiratory Syncytial Virus", Discovery on Target: New Antivirals Conference, Boston, MA, Oct 19th, 2022.

CONCLUSIONS

- EDP-323 displayed excellent bioavailablity in preclinical species with low plasma clearance.
- Our data showed favorable target tissue distribution in the lungs and AM without off-target distribution to the brain.
- Human PK projection predicted with a once-daily 100mg oral dose with desired antiviral efficacy.
- Favorable preclinical PK properties support further clinical development of EDP-323 as a novel treatment for RSV infection.
- A Phase 1 clinical trial of EDP-323 in healthy volunteers is ongoing (ClinicalTrials.gov Identifier NCT05587478).